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Introduction

Now turn to some applications and extensions of the
methodology developed so far.

Valuing an undeveloped offshore oil reserve, and determining
when it should be developed.
Operating options: The option to shut down a factory when
production is unprofitable, and the option to resume production
later.
Sequential investment: Investment decisions made sequentially
and in a particular order.
Jump processes: Key variable (e.g., price, value of a project)
makes discrete jumps up or down. For example, a copper mine
might be expropriated, or a machine might break down.
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Valuing Undeveloped Oil Reserves

An undeveloped oil reserve is like a call option. It gives the
owner the right to acquire a developed reserve by paying the
development cost.

When to develop the reserve? Same as deciding when to
exercise a call option.

The higher the uncertainty over future oil prices, the more
valuable is the undeveloped reserve, and the longer we should
wait to develop it.

Use of option theory focuses attention on nature and extent of
uncertainty.
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Comparison of Stock Call Option and Undeveloped

Petroleum Reserve

Stock Call Option Undeveloped Reserve

Current stock price Current value of developed reserve

Variance of rate of Variance of rate of change of the
return on the stock value of a developed resource

Exercise price Development Cost

Time to expiration Relinquishment requirement

Riskless rate of interest Riskless rate of interest

Dividend Net production revenue less
depletion
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Valuing Undeveloped Oil Reserves

Undeveloped oil reserve is an option to ”buy” a developed oil
reserve, so first step is to determine value of developed reserve.

Value will depend on price of oil.

Price of oil fluctuates stochastically, so value of developed
reserve will also fluctuate.

Once we know the stochastic process for the value of developed
reserve, use option theory to value the undeveloped reserve.

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS—PART III August, 2008 5 / 46



Valuing Undeveloped Oil Reserves (continued)

1. Value of Developed Reserve

B = number of barrels of oil
V = value per barrel
R = rate of return to owner of reserve
P = price of a barrel of oil
Π = After-tax profit from producing and

selling a barrel of oil
µ = risk-adjusted expected rate of return on oil
ω = fraction produced each year = .10

Production cost ≈ .3P , tax rate ≈ .34,

so Π = (1− .34)(.7)P = .45P

V =
∫ ∞

0
ωΠe−(r+ω)tdt =

ω(.45P)
r + ω

=
.045P

.14
= .32P
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Valuing Undeveloped Oil Reserves (continued)

Depletion of reserve: dB = −ωBdt

Return dynamics: Rdt = ωBΠdt + d(BV )
= ωBΠdt + BdV −ωBVdt

Return is partly random: Rdt/BV = µdt + σdz ,

where dz = ε
√

dt

µBVdt + σBVdz = ωBΠdt + BdV −ωBVdt,
so dV = µVdt −ω(Π− V )dt + σVdz

Therefore: dV = (µ− δ)Vdt + σVdz , where δ is payout rate
net of depletion:

δ = ω(Π− V )/V ≈ .04
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Valuing Undeveloped Oil Reserves (continued)

2. Value of Undeveloped Reserve

Given process for V , value of undeveloped reserve, we can now
determine value of developed reserve.

Let F (V , t) = value of 1-barrel unit of undeveloped reserve.

By setting up risk-free portfolio, etc., can show that F must
satisfy:

1
2σ2V 2 ∂2F

∂V 2
+ (r − δ)V

∂F

∂V
− rF = −∂F

∂t
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Valuing Undeveloped Oil Reserves (continued)

Boundary conditions:

F (0, t) = 0

F (V , T ) = max[VT −D, 0]

F (V ∗, t) = V ∗ −D

∂F (V ∗, t)/∂V = 1

where D = per barrel cost of development
V ∗= critical value that triggers development
T = time to expiration
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Valuation Example

Developed reserve expected to yield 100 million barrels of oil;

The present value of the development cost is $11.79 per barrel;

The development lag is 3 years;

Relinquishment is after a period of 10 years;

Standard deviation of value of developed reserves is 14.2 percent;

The payout ratio (net production revenues/value of reserves) is
4.1 percent; and

The value of the developed reserve today is $12 per barrel.

Step 1: Calculate the present value of a developed reserve (V′):

V′= e−(.041)×3 × $12 = $10.61 per barrel.

Step 2: Calculate the ratio of reserve value to development cost, C:
C = V′/D = $10.61/$11.79 = .90.
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Valuation Example (continued)

Step 3: Calculate the value of the undeveloped reserve:

Value = (Option Value per $1 Development Cost (from Table)) ×
(Total Development Cost) = (0.05245) × ($1179.0 million) =
$61.84 million.

Hence, although reserve cannot be profitably developed under
current conditions, the right to develop it in the future is worth
more than $60 million.

If you believe standard deviation of value of developed reserve is
25% instead of 14%, value of undeveloped reserve is much
higher.

So determining standard deviation is critical!
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Oil Price Uncertainty (90% Probability Range)
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Optimal Timing of Exercise

Figure: Critical Value for Development of Oil Reserve
(Shows V ∗ /D for δ = 0.04 and r = 0.0125, where D is development cost)
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Option Values per $1 of Development Cost

σv = 0.142 σv = 0.25

V/D T=5 T=10 T=15 T=5 T=10

0.80 0.01810 0.02812 0.03309 0.07394 0.010392
0.85 0.02761 0.03894 0.04430 0.09174 0.12305
0.90 0.04024 0.05245 0.05803 0.11169 0.14390
0.95 0.05643 0.06899 0.07458 0.13380 0.16646

1.00 0.07661 0.08890 0.09431 0.15804 0.19071
1.05 0.10116 0.11253 0.11754 0.18438 0.21664
1.10 0.13042 0.14025 0.14464 0.21278 0.24424
1.15 0.16472 0.17242 0.17599 0.24321 0.27349

Source: Siegel, Smith, and Paddock (1987).

Note: Because option values are homogeneous in the development cost,

total option value is the entry in the table times the total development

cost.
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Undeveloped Reserve Values (in $ Millions)

σ = 14.2% σ = 25%

V/D T=5 T=10 T=15 T=5 T=10

0.70 7.72 15.59 20.09 52.83 83.46
0.80 21.34 33.15 39.01 87.18 122.52
0.90 47.44 61.84 68.42 131.68 169.66
1.00 90.32 104.81 111.19 186.33 224.85
1.10 153.77 165.35 170.53 250.87 287.96

Note: This table uses a payout ratio of 4.1 percent and 100 Million Bbls of Oil.
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Is GBM the Right Model of Price?

Figure: Log Price of Crude Oil and Quadratic Trend Lines
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Mean Reversion in Oil Price

Consider the following mean-reverting process for the value of a
developed oil reserve:

dV = η (V − V ) V dt + σ V dz . (1)

Then the partial differential equation for value of undeveloped
reserve, F (V , t), is

1
2 σ2

v V 2 FVV + [r − µ + η(V − V )] V FV − r F = −Ft (2)

If the time until relinquishment is long enough (more than five
years), we can ignore the time dependence of F (V , t), so that
the term −Ft disappears.

As we saw, solution can be written using the confluent
hypergeometric function, which has a series representation.

Can use this solution, with different values for η and V , to
determine the extent to which mean reversion matters.
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Mean Reversion in Oil Price (continued)

Wey (1993) has shown, using a 100-year series for the real price
of crude oil, that a reasonable estimate for η is about 0.3, and
that using this value (and a value of σv of .20), the extent to
which mean reversion matters depends on the value to which V
reverts, V , relative to the development cost, D.

If V is much larger than D, accounting for mean reversion gives
a larger value for the undeveloped reserve when V < D because
V is expected to rise over time. Wey shows that if V is about
twice as large as D, ignoring mean reversion can lead one to
undervalue the reserve by 40 percent or more.

On the other hand, if V is about as large as D, ignoring mean
reversion will matter very little.
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Operating Options

You own a factory that produces widgets: 1000/month for the
next 10 years.

Variable cost of production is C = $10 per widget.

The price of widgets is now P = $15, but P will fluctuate over
time.

What is the value of this factory?

In each month, you have an option to produce 1000 widgets and
receive $1000P . For each option, the exercise price is 1000C =
$10,000.

You have 10 x 12 = 120 European call options, one for each
month.

Let Fn(P) denote the value of the option to produce 1000
widgets in month n when the current price of widgets is P .
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Operating Options (continued)

Then the value of this factory is simply the sum of the values of
the 120 options, i.e., it is:

V = F1(P) + F2(P) + ... + F120(P)
The Black-Scholes formula (modified for dividends) can be used
to value each Fn(P). To do this, one must determine the drift
and volatility for P .

Assume

dP/P = αdt + σdz

Let µ = risk-adjusted expected return on P .

Then δ = µ− α is the “return shortfall.” It is equivalent to a
dividend rate in the modified Black-Scholes formula. To find
Fn(P), just reduce P by the present value of the“dividends”,
and apply the standard B-S formula.
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Operating Options (continued)

For example, suppose P = $15, α = 0, µ = r . Then, δ = r , to
find, say, F12(P), i.e., the value of the option to produce one
year from now, replace P with

P ′ = P − rP/(1 + r) = P/(1 + r)

and then use the standard B-S formula:

F12 = P ′N(d1)− Ce−rTN(d2)

where d1 = ln(P ′/C )+(r+σ2/2)T
σ
√

T
, and d2 = d1 − σ

√
T

Here N(.) is the cumulative probability distribution function for
a standardized normal distribution. Also, T = 1 if we are
looking at the option to produce one year from now.
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Sequential Investment

Many investment decisions are made sequentially, and in a
particular order.

Oil production capacity: Find reserves, then develop them.
New line of aircraft: Engineering, prototype production, testing,
final tooling.
Drug development: Find new molecule, Phase I testing, Phase
II, Phase III, construct production facility, marketing.
Any investment that can be halted midway and temporarily or
permanently abandoned.

Like a compound option; each stage completed (or dollar
invested) gives the firm an option to complete the next stage (or
invest the next dollar).
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Sequential Investment (continued)

Example: two-stage investment in new oil production capacity.

First, obtain reserves, through exploration or purchase, at cost
I1.
Second, Build development wells, at cost I2.
Begin with option, worth F1(P), to invest in reserves. Investing
gives the firm another option, worth F2(P), to invest in
development wells.
Making this second investment yields production capacity, worth
V (P).

Work backwards to find the optimal investment rules.
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Investment Rule for a Two-Stage Project

Project, once completed, produces one unit of output per period
at an operating cost C .

Output can be sold at price P, which follows a GBM:

dP = α P dt + σ P dz . (3)

Production can be temporarily suspended when P falls below C ,
and resumed when P rises above C , so profit flow is
π(P) = max [P − C , 0].

Investing in first stage requires sunk cost I1, and second stage
requires sunk cost I2.
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Investment Rule for a Two-Stage Project (con’t.)

Solve the investment problem by working backwards:

First, find value of completed project V (P).
Next, find value of option to invest in second stage, F2(P), and
critical price P∗

2 for investing.

Then, find value of option to invest in first stage, F1(P), and
critical price P∗

1 .
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Investment Rule for a Two-Stage Project (con’t.)

Value of the Project. V (P) must satisfy

1
2 σ2 P2 V ′′(P) + (r − δ) P V ′(P)− r V (P) + π(P) = 0 , (4)

subject to V (0) = 0, and continuity of V (P) and VP(P) at
P = C . Solution is:

V (P) =
{

A1 Pβ1 if P < C ,
B2 Pβ2 + P/δ− C/r if P > C .

(5)

where

β1 = 1
2 − (r − δ)/σ2 +

√[
(r − δ)/σ2 − 1

2

]2 + 2r/σ2 > 1,

β2 = 1
2 − (r − δ)/σ2 −

√[
(r − δ)/σ2 − 1

2

]2 + 2r/σ2 < 0.
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Investment Rule for a Two-Stage Project (con’t.)

Constants A1 and B2 found from continuity of V (P) and V ′(P) at
P = C :

A1 =
C 1−β1

β1 − β2

(
β2

r
− β2 − 1

δ

)
(6)

B2 =
C 1−β2

β1 − β2

(
β1

r
− β1 − 1

δ

)
(7)
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Investment Rule for a Two-Stage Project (con’t.)

Second-Stage Investment. Find value of option to invest in
second stage, F2(P), and critical price P∗

2 .

Value of option must satisfy

1
2 σ2 P2 F ′′

2 (P) + (r − δ) P F ′
2(P)− r F (P) = 0 (8)

subject to the boundary conditions

F2(0) = 0 (9)

F2(P∗
2 ) = V (P∗

2 )− I2 (10)

F ′
2(P

∗
2 ) = V ′(P∗

2 ) (11)
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Investment Rule for a Two-Stage Project (con’t.)

Guess and then confirm that P∗
2 > C , so use solution for V (P)

in eq. (5) for P > C , in conditions (10) and (11). From
condition (9):

F2(P) = D2 Pβ1 . (12)

From boundary conditions (10) and (11),

D2 =
β2B2

β1
(P∗

2 )(β2−β1) +
1

δβ1
(P∗

2 )(1−β1) , (13)

and P∗
2 is the solution to

(β1 − β2) B2(P∗
2 )β2 + (β1 − 1) P∗

2 /δ

− β1 (C/r + I2) = 0. (14)

Eq. (14) must be solved numerically for P∗
2 .
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Investment Rule for a Two-Stage Project (con’t.)

Solution given by eq. (12) applies for P < P∗
2 . When P ≥ P∗

2
the firm exercises option to invest, and F2(P) = V (P)− I2:

F2(P) =
{

D2 Pβ1 for P < P∗
2

V (P)− I2 for P ≥ P∗
2

(15)
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Investment Rule for a Two-Stage Project (con’t.)

First-Stage Investment. Given F2(P) and P∗
2 , can back up to

first stage and find value of option to invest, F1(P), and critical
price P∗

1 .

F1(P) also satisfies eq. (8), but now subject to

F1(0) = 0 (16)

F1(P∗
1 ) = F2(P∗

1 )− I1 (17)

F ′
1(P

∗
1 ) = F ′

2(P
∗
1 ) (18)

Solution has the usual form:

F1(P) = D1 Pβ1 . (19)

Use (17) and (18) to find D1 and critical price P∗
1 . Because

P∗
1 > P∗

2 , F2(P∗
1 ) = V (P∗

1 )− I2.
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Investment Rule for a Two-Stage Project (con’t.)

Since P∗
1 > P∗

2 , and since the investment can be completed
instantaneously (before P can change), we know that once P reaches
P∗

1 and the firm invests, it will complete both stages of the project.
This result seems anti-climactic, so why bother to solve this
two-stage problem? Why not simply combine the two stages?

First, real-world investing takes time, so firms often do complete
early stages and then wait before proceeding with later stages.

Second, the two stages may require different technical or
managerial skills, may be located in different countries, or may
be subject to different tax treatments. For these reasons one
firm may sell a partially completed project to another. Our
method lets us value a partially completed project.

Third, we will apply this approach to problems where
completion of the project takes time.
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Critical Prices and Option Values for Two-Stage

Project
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Investment Rule for a Two-Stage Project (con’t.)

Extension to projects with three or more stages: Start at the
end and work backwards, using solution for each stage in the
boundary conditions for the previous stage. Value of option to
invest in any stage j of an N-stage project is of the form

Fj (P) = Dj Pβ1 ,

and the coefficient Dj and critical price P∗
j are found by solving

equations (13) and (14), with P∗
j replacing P∗

2 and
Ij + Ij+1 + . . . + IN replacing I2.
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Introduction to Jump Processes

Sometimes uncertainty is discrete in nature.

Competitor enters with better product, making yours worthless.

New regulations make your factory worth less (or more).

Sudden, unexpected success in the laboratory.

Foreign operation is expropriated, or tax treatment changed.

War, financial collapse, pestilence, etc.

As long as these discrete events are non-systematic
(diversifiable), easy to handle.

Model as jump (Poisson) process, dq. Analogous to Wiener
process:

dq =
{

0 with probability 1− λ dt
u with probability λ dt.

where u is the size of the jump (and can be random).
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Simple Example: Value of a Machine

Suppose a machine produces constant flow of profit, π, as long
as it operates.

First, assume it lasts forever and never fails. No risk. Then asset
return equation is:

rVdt = πdt

and value of machine is V = π/r .
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Simple Example: Value of a Machine (con’t.)

Now suppose at some point machine will break down and have
to be discarded. So value of the machine follows the process:

dV − Vdq

where dq is a jump (Poisson) process. Now asset return
equation is:

rVdt = πdt + E(dV ) = πdt − λVdt

Thus,

V =
π

r + λ
.

So just increase discount rate by λ.
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Undeveloped Oil Reserve

Back to undeveloped oil reserve. Recall that value of developed
reserve followed the process:

dV = (µ− δ)Vdt + σVdz

where δ is payout rate net of depletion:

δ = ω(Π− V )/V ≈ .04

Now suppose a developed reserve is subject to full or partial
expropriation. Then V follows:

dV = (µ− δ)Vdt + σVdz − Vdq

where dq is a jump process with mean arrival rate λ, and

E(dzdq) = 0.
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Undeveloped Oil Reserve (con’t.)

If “event” occurs, q falls by a fixed percentage φ (with
0 ≤ φ ≤ 1). Thus V fluctuates as a GBM, but over each dt
there is a small probability λdt that it will drop to (1− φ) times
its original value, and then continue fluctuating until another
event occurs.
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How to Estimate Arrival Rate λ?

Begin with estimate of expected time T for event to occur, e.g.,
5 years.

Now get equation for E(T ). Probability that no event occurs
over (0, T ) is e−λ T . So probability that the first event occurs in
the short interval (T , T + dT ) is e−λ T λ dT . So expected time
until V jumps is:

E [T ] =
∫ ∞

0
λ T e−λT dT = 1/λ

So if expected T is 5 years (60 months), use 0.2 (.01667) for λ.
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Optimal Investment Rule

Want to find F (V ), value of undeveloped reserve, and optimal
exercise point V ∗.
As we saw earlier, the dz component of dV can be “replicated.”
We assume dq is non-systematic, i.e., can be diversified. So use
risk-free rate. Then return equation is:

rFdt = E(dF ) .

Expand dF :

r F dt = (µ− δ)VF ′(V )dt + 1
2 σ2 V 2 F ′′(V )dt−

λ { F (V )− F [(1− φ) V ] } dt .

Can rewrite this as:

1
2 σ2V 2F ′′(V ) + (r − δ)VF ′(V )− (r + λ)F (V )+

λF [(1− φ)V ] = 0 .

The same boundary conditions apply as before.
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Optimal Investment Rule

Solution is again of the form F (V ) = AV β1 , but now β1 is the
positive solution to a slightly more complicated equation:

1
2σ2β(β− 1) + (r − δ)β− (r + λ) + λ(1− φ)β = 0

Value of β that satisfies this and also satisfies F (0) = 0 can be
found numerically. Then V ∗ and A can be found.

If φ = 1 (so “event” is that V falls to zero) above equation is a
quadratic equation, and positive solution is:

β1 = 1
2 − (r − δ)/σ2 +

√[
(r − δ)/σ2 − 1

2

]2 + 2(r + λ)/σ2

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS—PART III August, 2008 42 / 46



Optimal Investment Rule (con’t.)

Table shows β1, V ∗, and a for various values of λ, for case of
φ = 1. A positive value of λ affects F (V ) in two ways.

First, it reduces the expected rate of capital gain on V (from α
to α− λ), which reduces F (V ).

Second, it increases variance of changes in V , which increases
F (V ).

As the Table shows, net effect is to reduce F (V ), and thus
reduce the critical value V ∗.

Net effect is strong; small increases in λ lead to big drop in V ∗.

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS—PART III August, 2008 43 / 46



Dependence of β1, V ∗, and A on λ

(Note: I = 1, φ = 1, r = δ = .04, and σ = .2.)

λ β V ∗ A

0 2.00 2.00 .250
.05 2.70 1.59 .169
.1 3.19 1.46 .138
.2 4.00 1.33 .105
.3 4.65 1.27 .009
.5 5.72 1.21 .007
1.0 7.73 1.15 .005
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Optimal Investment Rule (continued)

Note that we increased λ while holding α = µ− δ fixed. Could
argue that the market-determined expected rate of return on V
should remain constant, so that an increase in λ is accompanied
by a commensurate increase in α (otherwise no investor would
hold this project).

Suppose φ = 1. If α increases as much as λ so α− λ is
constant, we have to replace the terms (r − δ) in equation for β
with (r + λ− δ). Then an increase in λ is like an increase in
the risk-free rate r , and leads to an increase in F (V ) and V ∗.
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Optimal Investment Rule (continued)

The simple jump process we used leads to a differential equation
for F (V ) that is easy to solve. Could specify different process
for V .

Firm holding a patent faces competitors, each trying to develop
its own patent. Success of a competitor might cause V to fall
by a random, rather than fixed amount. Over time additional
competitors may enter, so V continues to fall.
Calculation of optimal investment rule is more difficult, and
would require numerical solution method.
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